The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways.
نویسندگان
چکیده
The bacterial phosphoenolpyruvate phosphotransferase system (PTS) is a highly conserved phosphotransfer cascade that participates in the transport and phosphorylation of selected carbohydrates and modulates many cellular functions in response to carbohydrate availability. It plays a role in the virulence of many bacterial pathogens. Components of the carbohydrate-specific PTS include the general cytoplasmic components enzyme I (EI) and histidine protein (HPr), the sugar-specific cytoplasmic components enzymes IIA (EIIA) and IIB (EIIB), and the sugar-specific membrane-associated multisubunit components enzymes IIC (EIIC) and IID (EIID). Many bacterial genomes also encode a parallel PTS pathway that includes the EI homolog EI(Ntr), the HPr homolog NPr, and the EIIA homolog EIIA(Ntr). This pathway is thought to be nitrogen specific because of the proximity of the genes encoding this pathway to the genes encoding the nitrogen-specific sigma factor sigma(54). We previously reported that phosphorylation of HPr and FPr by EI represses Vibrio cholerae biofilm formation in minimal medium supplemented with glucose or pyruvate. Here we report two additional PTS-based biofilm regulatory pathways that are active in LB broth but not in minimal medium. These pathways involve the glucose-specific enzyme EIIA (EIIA(Glc)) and two nitrogen-specific EIIA homologs, EIIA(Ntr1) and EIIA(Ntr2). The presence of multiple, independent biofilm regulatory circuits in the PTS supports the hypothesis that the PTS and PTS-dependent substrates have a central role in sensing environments suitable for a surface-associated existence.
منابع مشابه
Spermidine regulates Vibrio cholerae bio¢lm formation via transport and signaling pathways
Vibrio cholerae, the causative agent of the devastating diarrheal disease cholera, canform biofilms on diverse biotic and abiotic surfaces. Biofilm formation is important for the survival of this organism both in its natural environment and in the human host. Development of V. cholerae biofilms are regulated by complex regulatory networks that respond to environmental signals. One of these sign...
متن کاملGlucose-Specific Enzyme IIA Has Unique Binding Partners in The Vibrio cholerae Biofilm
UNLABELLED Glucose-specific enzyme IIA (EIIA(Glc)) is a central regulator of bacterial metabolism and an intermediate in the phosphoenolpyruvate phosphotransferase system (PTS), a conserved phosphotransfer cascade that controls carbohydrate transport. We previously reported that EIIA(Glc) activates transcription of the genes required for Vibrio cholerae biofilm formation. While EIIA(Glc) modula...
متن کاملSpermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways.
Vibrio cholerae, the causative agent of the devastating diarrheal disease cholera, can form biofilms on diverse biotic and abiotic surfaces. Biofilm formation is important for the survival of this organism both in its natural environment and in the human host. Development of V. cholerae biofilms are regulated by complex regulatory networks that respond to environmental signals. One of these sig...
متن کاملTemporal quorum-sensing induction regulates Vibrio cholerae biofilm architecture.
Vibrio cholerae, the pathogen that causes cholera, also survives in aqueous reservoirs, probably in the form of biofilms. Quorum sensing negatively regulates V. cholerae biofilm formation through HapR, whose expression is induced at a high cell density. In this study, we show that the concentration of the quorum-sensing signal molecule CAI-1 is higher in biofilms than in planktonic cultures. By...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 192 12 شماره
صفحات -
تاریخ انتشار 2010